If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11a+a^2+18=0
a = 1; b = 11; c = +18;
Δ = b2-4ac
Δ = 112-4·1·18
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-7}{2*1}=\frac{-18}{2} =-9 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+7}{2*1}=\frac{-4}{2} =-2 $
| 25(x)=30(48) | | 25(x)=30*48 | | x-x(0.25)=250 | | k-3(k+5)-0.5=3(0.25k+4) | | x-x(0.25)=450 | | x-x(0.20)=450 | | 11m-2=5m+1 | | 3y+18=5y-6 | | x-x(0.15)=450 | | 3y+18=12y-6 | | 19.64=4p | | n+1=2.6 | | (7-x)^2=121 | | 7x-3=2x-4 | | (12-x)(4-x)(4+x)=120 | | 6z⁴-25z³+32z²-+10=0 | | 1(x+9)=2 | | (35)(96)=32x | | 3x+4+7x-8+5x+2=45 | | 2x+20=3x+10=40 | | 8(3x+2)=4(5x+11) | | -9q+9.86=-2(7q+9.65)-9.84 | | 10x-8x+2+10=2x+12 | | 2x=1/64x= | | 3x+17=6x-5 | | (z+5)(z-7)=0 | | 2x+20+3x+10=40 | | 6x=110-5x | | 40+2x+20+3x+10=90 | | 40+2x+20+3x+10=180 | | 9^(3x-1)=1/27 | | A(2)=3+0.50p |